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ON NONLINEAR PRESSURE COUPLING IN CYLINDRICAL SHELL ANALYSIS 

ABSTRACT 

Two well known thin shell theories are used to evaluate and compare 

shears and moments at the juncture of two pressurized cylindrical shells. 

For highly pressurized cylinders with large radius-thickness ratios the 

numerical results indicate that nonlinear coupling effects of pressure 

significantly influence computed values of discontinuity shears and moments. 

1. INTRODUCTION 

Many structural problems in the aerospace industry involve highly pres- 

surized shells with large radius-thickness ratios, and under these circum- 

stances, as suggested by Hetenyi (l)* the coupling effects of pressure often • 

have a significant influence on discontinuity shears, moments, and stresses. 

Accordingly, a number of investigations have recently "been focused on this 

problem for pressurized cylindrical (2-8), spherical (9-10), and arbitrary 

shells of revolution (ll). For internally pressurized shells, comparisons 

made between discontinuity analyses that include and neglect the coupling 

effects of meridional load (7, 8) imply that use of the refined method gen- 

erally yields lower calculated maximum stresses and results in a lighter- 

weight structure. 

In this report two well known thin shell theories are used to evaluate 

and compare shears and moments at the juncture of two pressurized cylindrical 

shells. For thin highly pressurized cylinders the numerical results indicate 

that nonlinear coupling effects of pressure have a significant influence on 

computed values of discontinuity shears and moments. 

1Numbers in parentheses designate references listed in the Bibliography. 



2. NOMENCLATURE 

a = radius of shell middle surface 

A, B      = constants of integration 

D = flexural rigidity, Eh3/l2(l-&s) 

E = modulus of elasticity 

h = shell thickness 

k = shell parameter, Eh/a8 

m = nondimensional load parameter 

MQ, Q = moment and shear at discontinuity neglecting N     ^v 

dx 

ML, Qj. = moment and shear at discontinuity including N   _£_£ 
X   dx3 

N = axial stress resultant, positive -when tensile 

p = internal pressure 

v = radial deflection measured positive invard 

v , v = complementary and particular solutions, respectively c     P 
x = axial coordinate 

a,  ß,  ß, Y = parameters entering into complementary solution 

6a,  62 = membrane expansions given "by Eq. [7] 

T\ = shell thickness ratio, \/hs 

X4 = shell parameter, k/to 

v = Poisson's ratio 

3« THEORY 

The differential equation that governs small axisymmetric displacements of 

thin cylindrical shells may, -with the notation in the Nomenclature, he written 

in the form (12) 

— v = -p + v - 
dx*        ~      dx* a* 

DJ^  -^ +-T-'-■»♦'» ^r- W 



In many discontinuity analyses (13) it is permissible, as verified "by test re- 

sults (Ik, 15), to delete the pressure coupling term N_ _£Z_ from Eq. [l]. 
x   dx 

Hovever, "by parametric evaluation of a simple problem,  it vill "be demonstrated 

that this simplification process is not generally valid for highly pressurized 

cylindrical shells -with large radius-thickness ratios'. 

The general solution of Eq.  [l] for a semi-infinite cylindrical shell is 

veil known (l) and may he expressed in the form 

v = v   + v [2] 
c       P • 

■where _ If 
v   =-_£(P-v-2L) [3] 
P Eh a 

H   < 2VS", v   = e"aX (A sin ßx + B cos 0x) 

IL = 2VST, v   = e"YX (A + Bx) [4] 

B   > 2Vk5", v   = e"ax (A sinh |x + B cosh lac) 

and 

a=Vx=+4,S.-i?=Vxs-4,Y=/ 
B 
x 

to  ' to 2D 

^.   ANALYSIS 

C5] 

Figure 1 shows a longitudinal section of the juncture of tvo semi-infinite 

cylindrical shells that are subjected to internal pressure p.    Take hj ^ hg 

and let ^ and 2^ he directed as shown.    With the compatibility and equilibrium 

conditions at the juncture, along vith Eqs. [2-5],  i* may ^e shown that the dis- 

continuity moment VL. and shear G„..act as shown in Fig. 1 and can he expressed 

in the following form: 

«H 

Sf- 

to, 

(n^8* D2\
27 + a^a. C^"* *■") + -^ CDiXi8 + W) 



where 

1        Ehj> a' ET] 

H   = _2L- 
x        2 

and the subscript    i (i = 1, 2)    denotes quantities evaluated in the region 

0 ^ x. £ °° .    When -written in their present form, Eqs. [6] are valid for all values 

of   N*. 

If effects of pressure coupling are neglected the moment MQ and shear QQ 

at the discontinuity nay, "by suitable reduction of Eqs. [6], he shown to he 

g^W^Xy »"■ W)(«i - O 

C8] 

(D,^ DSX2
S)2+ 2D1D2X1X2(X1

S+ X3
S) 

Eqs.  [8] agree vith results given earlier by Johns (13, Ik). 

An interesting quantitative comparison of these results may he obtained hy 
M Q 

forming the dimensionless ratios   —=L and   _2_ as follows: 
Mo .   QH 

% (1+77 )    + 2T?        (1^7) 
M0         (1+7)2)2 + 2773/2(l+T])V(l+m)(lW) + 2m772(l+Tj2) 

\ =  1 + T)5/g , *> 
QK

        (l+2aj]2)Vl + m + 7y5/2(l+2m)Vl+mrj2       H 

[91 

where 

^       ™    V3(1-^S)       Pa8 r10-i 
77 = -^,    m- 2 -^¥ L10J 

Plots of       "     and     ^     versus   7)   for various values of the nondimensional 

load parameter m are shown in Figs. 2 and 3,  respectively.    Note that results 

obtained including effects of   N     on local bending imply that computed values 
A- 

of the discontinuity bending moment and shear are significantly reduced and 

k 



increased,  respectively, over corresponding values obtained by neglecting 

pressure coupling effects.    For example,  consider the following case: 

a = 20" 

\ = 0.10" 

ha = 0.20" 

p = 200 psi 

E = 10 x 10s psi 

v =0.3 

Thus 

77 =0.5,   m = 0.661 

and from Figs. 2 and 3 

^=0.T5M0, 0,-1.3*^, 

Consequently in this instance the discontinuity moments and shears computed "by 

neglecting coupling effects of meridional load are in error by approximately 25$ 

and 39$, respectively. 

The stresses have not been discussed in this report. Hoveyer, preliminary 

calculations indicate that the'maximum stress always occurs in the thinner shell. 

For ffrnqll values of 77 the longitudinal stress governs the design, whereas for 

large values of 77 the hoop stress governs. Also, it was found that computed 

values of the maximum stress are reduced -when pressure coupling effects are in- 

cluded in the analysis.. In practice it is recommended that the maximum stress be 

computed by using Eos. [6] in conjunction -with the techniques outlined by 

Grossman (T) and Smith (8). 
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Fig. 2 Moment comparison curves 



1.0 

.8 

m 

0.1 

0.25 

0.5 

1 

2 

4 

10 

40 
100 

. 

0 2                     .* 1                     .1 3                      .1 3                      1 .0 

Fig. 3 Shear comparison curves 

10 



7. DISTRIBUTION 

Division 

General Office 
(N.Y.) 

Astronautics 

Convair 

Fort Worth 

Pomona 

Recipient 

W. J. Eding 

H. F. Dunholter 

F. J. Dore 

V. A. BaMts 

A. H. Hausrath 

Division Library 

G. G. Green 

Division Library 

E. L. Secrest 

E. H. Watts 

Division Library 

G. E. Burkheimer 

J. Benish 

M. F. Etoughton 

H. A. Swift 

Division Library 

No. of 
Mail Zone Copies 

Rockefeller Plaza 2 
N.Y. 20, N.Y. 

590-00 1 

58O-OO 1 

592-00 1 

557-10 1 

128-00 2 

6-143 2 

6-157 - 1 

E-69 3 

T-38 2 

E-26 1 

6-1 3 

6-95 1 

6-95 1 

6-56 2 

6-20 1 

11 



AO NUMBER 

1.    REPORT IDENTIFYING INFORMATION 

A.   ORIGINATING AGENCY 

General Dynamics/Astronautics 
B.   REPORT TITLE AND/OR NUMBER 

GD/A 63-0767        ERR-AN-316 
C.   MONITOR  REPORT NUMBER 

□ .   PREPARED UNDER CONTRACT NUMBER 

2.    DISTRIBUTION STATEMENT 

DTICD™™  50 

A 

DTIC ACCESSION 

NOTICE 

REQUESTER: 
1. Put your mailing address on 

reverse of form. 

2. Complete items 1 and 2. 

3. Attach form to reports 
mailed to DTIC. 

4. Use unclassified information 
only. 

DTIC: 
1. Assign AD Number. 

2. Return to requester. 

ASIAC 49 

PREVIOUS EDITIONS ARE OBSOLETE 

DEFENSE TECHNICAL INFORMATION CENTER 

CAMERON STATION 
ALEXANDRIA, VIRGINIA  22314 

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE, $300 

POSTAGE AND FEES PAID 

DEFENSE LOGISTICS AGENCY 

DOD-3M 

AFWAL/FIBRA (ASIAC) 
WPAFBr OH 45433 
ATTN: CATHERINE WOLF 


